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The non-linear resonance behaviour of two typical hardening systems subjected to
various forms of excitation is examined. For the system with a linear stiffness component
it is shown that for small forcing levels the system behaves like a linear system with
resonance occurring when the forcing frequency is approximately equal to the linearized
natural frequency. As the forcing amplitude is increased the steady state response peaks
towards higher frequencies leading to the well known jump phenomenon. Often such jumps
to (and from) resonance are a purely deterministic event in which the system settles on to
the solution lying on the (non-)resonant branch of the response curve. At higher, but still
moderate forcing values, it is shown that such jumps can be indeterminate in the sense that
one cannot predict whether the system re-stabilizes or not; indeed, their outcome may go
to another coexisting solution at the bifurcation. Examples of hardening systems exhibiting
unpredictable jumps to and from resonance are presented.
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1. INTRODUCTION

In non-linear vibrations, hardening systems can loosely be classed as systems the stiffness
of which increases with load. Although hardening systems are similar to linear systems in
that they are characterized by having one statical equilibrium state, such that autonomous
motions are confined to a single potential well (see Figure 1), their associated resonance
behaviour differs quite substantially [1–5]. It has been shown that in situations in which
there is more than one remote coexisting attractor at the local instability, jumps may be
indeterminate in the sense that one cannot predict to which solution the system will settle
upon, in which the outcome may be probabilistic [6]. This followed earlier work on the
response of softening systems [7, 8] who examined the motions of a particle that has the
ability to escape from a potential well in which there inherently exists a remote coexisting
solution at a local bifurcation [7–9]. The basin and manifold organization generating
indeterminate bifurcations have been discussed by Soliman and Thompson [8]. It was
shown that when a highly intertwined basin structure accumulating in the vicinity of the
saddle-node due to the inherent uncertainties in the specification of the initial conditions
or parameter values, long-term predictability will be lost and hence the jump will be
indeterminate. Indeed irrelevant of the type of non-linearity, whether it be softening or
hardening, it is the structure of the attractor–basin phase portrait that dictates whether
or not there is an indeterminate bifurcation. In reference [10], bifurcations of equilibria
for hardening systems were examined; here bifurcations of cycles which exhibit the more
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Figure 1. Motions in a hardening system.

typical resonance behaviour are discussed. In order to illustrate these ideas we consider
two systems which are modelled by a particle in a potential well governed by the potential
energies V(x)= x2/2+ x4 and V(x)= x4/4, the corresponding equations of motion of
which are

ẍ+ bẋ+(1+F sin vt) (x+ x3)=0·1F sin (vt) (model A),

ẍ+ bẋ+ x3 =F cos (vt) (model B),

which, as indicated, are referred to as model A and model B respectively. Here, x is the
dependant variable and a dot denotes differentiation with respect to time t. The magnitude
of the damping, b, is fixed at b=0·5. For model A, the oscillator is driven by an excitation
of amplitude F and frequency v. The focus of the studies here is on the region near the
fundamental frequency regime (v1 1). The studies are concentrated on model A unless
otherwise explicitly stated. Note that model A is both parametrically and externally
excited, unlike the parametrically excited system examined by Soliman and Thompson [10].
Here bifurcations are generic since in the parametrically excited system, bifurcations are
of course structurally unstable, since a typical perturbation of the dynamical system will
destroy the equilibrium solution [11].

The structure of this paper is as follows. Section 2 is a discussion of the implications
of indeterminate jump phenomenon for engineers and applied scientists. Section 3 is an
outline of the main steady state bifurcations, in (F, v) control space, in the frequency
regime close to v=1 for model A. Section 4 presents non-linear resonance curves of the
above system at relatively small forcing levels. Safe jumps are illustrated by determining
the attractor–basin phase portraits just prior to the jump; it is shown that at the point of
instability the saddle-node is located in the interior of the resonant basin well away from
the basin boundary separating any remote attractors. Section 5 delineates the phenomena
of indeterminate jumps; here it is shown that the saddle-node will hit a highly intertwined
basin boundary at the point of instability: long-term predictability will be lost and hence
the jump will be indeterminate in the sense that the system settles on to any of the attractors
the basins of which have accumulated in the vicinity of the saddle-node. Two examples
(model A and model B) illustrating unpredictable jumps to and from resonance are
presented. In has to be noted that the addition of parametric excitation in model A tends
to have a destabilizing effect on the resonant branch of the response curve and the creation
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of several large amplitude attractors; here the focus is on indeterminate jumps to
resonance. On the other hand for the purely externally excited hardening system (model
B) jumps to resonance are found to be deterministic since the only other attractor is the
resonant solution lying on the resonant branch of the response curve; attention therefore
is focussed on frequencies generating jumps from resonance in which multiple solutions
may coexist. In section 6 unsafe jumps are discussed, in which there is no possibility of
the system re-stabilizing on to the resonant solution. The outcome may or may not be
determinate. Conclusions are in section 7.

2. IMPLICATIONS OF INDETERMINATE JUMP PHENOMENON FOR ENGINEERS

As shall be shown, one of the classical features exhibited in non-linear structural and
mechanical systems is the jump phenomenon, in which under the variation of a control
parameter, such as the frequency, there is jump to a disconnected attractor, resulting not
only in a qualitative, but often a substantial quantitative change in the response. It will
be shown that in situations in which there is more than one remote coexisting attractor
at the local instability, jumps may be indeterminate in the sense that one cannot predict
to which solution the system will settle upon. This has important implications for engineers
and applied scientists involved with physical experiments, simulation of numerical models
or analytical studies. For example the experimentalist when dealing with real physical
systems, where it is difficult to control the imperfections, such as the material
inhomogeneities, the initial conditions or parameter transitions with an indeterminate
outcome imply that repetition under ‘almost identical’ conditions may result in
qualitatively different types of response. In situations in which parameters are slowly
varied, a loss of repeatability may be interpreted in the context of the inherent
indeterminacy properties of the system, rather than be attributed to experimental error
[12]. This may equally be applied for the engineer carrying out numerical experiments.
Furthermore, analytical techniques may not be able to pick up such indeterminate
phenomena since they become increasingly inaccurate as the strength of the non-linearity
is increased in which chaotic oscillations, or coexisting basins of attraction with an intricate
structure, may occur. In such cases the analyst has to resort to numerical techniques. It
has to be pointed out that recently there have been laboratory experiments [13] to confirm
many features of the unpredictability of the jump phenomenon.

3. BIFURCATION BOUNDARIES

In Figure 2 are shown the main steady state stability boundaries, in (F, v) control space,
in the frequency regime close to v=1. Point S is a cusp; for this hardening system,
frequencies below vS or forcing values below F s, no jump occurs. Above S, there is the
creation of two fold lines. A represents a saddle-node bifurcation, which under increasing
F, results in a jump to resonance. Line B corresponds to a saddle-node fold which results
in the creation of a finite amplitude limit cycle of order n=1. Line C is the first
period-doubling flip bifurcation, at which this resonant harmonic attractor period-doubles
to a stable subharmonic of order n=2. There is an infinite sequence of these flip
bifurcations leading to a chaotic attractor which finally loses its stability at a crisis at E.
Point Q corresponds to where line E intersects line A. For jumps to resonance occurring
from a saddle-node bifurcation (from A) above point Q, there are no available
fundamental attractors to jump to, and hence unsafe jump occurs. The steady state
stability boundary, beyond which there are no fundamental attractors within the well, is
indicated by the dot-screen. Several analytical techniques may be used to predict
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Figure 2. Bifurcation diagram (model A). The bifurcation diagram in the (F, v) control space at b=0·05.
Line A indicates the loss of stability at a saddle-node bifurcation the fundamental solution originating from
F= x= y=0. Line B is the fold creation of the resonant limit cycle, C is the first flip bifurcation of this attractor;
D is the second period-doubling bifurcation approximating line E where this attractor loses its stability at a crisis.
Lines P correspond to bifurcation values of a coexisting period-1 attractor.

instabilities A and E and hence determine this region. Most notably a technique has been
developed by Virgin [14], who examined equations of this type and obtained good
comparison with results given by numerical techniques. It was shown in that paper that
fold line A was determined from a first order instability criterion; period-doubling line C
was obtained by using Floquet theory to predict an instability of a period-T oscillation,
giving rise to the period-2T solution (which approximates line E).

It has to be acknowledged that what have been determined here are the bifurcation lines
for the fundamental solution (that originating from F= x= y=0); in typical non-linear
systems multiple solutions may exist [15]. Hence corresponding bifurcation lines of a
typical coexisting solution, a period-1 attractor, have been superimposed.

4. SAFE DETERMINATE JUMPS: RELATIVELY SMALL FORCING AMPLITUDES

In Figure 3 are shown, for relatively small F, response curves in the frequency–amplitude
plane illustrating the hardening characteristics of the system. At the lowest value of forcing

Figure 3. Non-linear resonance in hardening systems (model A).
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Figure 4. Safe determinate jumps (model A). (a) The steady state resonance response curve at a relatively low
forcing level (F=0·50), illustrating how the amplitude of the response, X, varies with frequency, V. Here the
jump from point A always re-stabilizes on to the large amplitude limit cycle, R, that lies on the resonant branch
of the response curve. The inset shows a typical time history after the fold; here the transient response always
leads to the large amplitude limit cycle. (b) The attractor–basin phase portrait just prior to a safe saddle-node
bifurcation in the window −1·5Q xQ 1·5, −1·5Q yQ 1·5. Here v=1·0775, G=0·50. Sr represent the
Poincaré, points of the stable n=1 harmonic attractor; Dr represents the unstable saddle solution and Sr

represents the non-resonant solution. Grey shading represents the basin of attraction of the resonant solution;
the basin of the non-resonant solution is in white.

amplitude considered (F=0·05), resonance occurs when the forcing frequency is
approximately equal to the linearized natural frequency. As F is increased the steady state
response peaks towards higher frequencies, typical of hardening systems. At F=0·3 the
classical jump phenomenon takes place; upon slowly increasing v from relatively small
values there is a jump from resonance at fold point B; conversely under increasing v there
is a jump to resonance, at point A which results in a substantial quantitative change in the
amplitude of the response. At larger values of F it may be noted, from the bifurcation
diagram of Figure 2, that for 0·35QFQ 0·85 the harmonic n=1 solution lying on the
upper branch of the response curve remains stable for all frequency values considered here.
This can be seen in Figure 4(a) showing the response diagram at F=0·50. Under slowly
increasing v the harmonic cycle grows in amplitude. Conversely, upon decreasing v from
a relatively high value, one observe that the system loses its stability at a saddle-node
bifurcation, at point A. Here, as in the previous case, small perturbations from point A
will result in a jump to resonance which always re-stabilizes on to the resonant oscillation
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R, lying on the resonant branch of the response curve. A typical time history is shown
in the inset; here the system has been set on the saddle-node and then given a small
increment Dv. We see that the system initially remains near the now unstable saddle-node
solution, and finally settles on to the steady state large amplitude limit cycle. This is due
to the fact that no major global connections between the unstable manifold of the resonant
saddle, Dr , and stable manifold have occurred [10]. This is clearly delineated in Figure 4(b),
which shows the basin organization, in the Poincaré section, just prior to the jump to
resonance at A. Here it can clearly be seen that when the saddle-node bifurcation occurs,
in which the non-resonant solution, Sn , coalesces with the unstable solution, represented
by the mapping points Dr , the system will re-stabilize on to the resonant attractor Sr as
it is located in the interior of the resonant basin. Thus one has a totally determinate jump
to Sr which is preserved under conditions of small external noise or finite perturbation of
the initial conditions.

5. INDETERMINATE JUMPS IN HARDENING SYSTEMS

In Figure 5(a), at F=0·85, is shown a response diagram in which the jump to resonance
is indeterminate. Under decreasing frequency the non-resonant solution loses its stability
at the saddle-node, A. At the parameter value of this bifurcation there also coexist other
bounded ‘‘remote’’ attractors. Remote attractors in the figure refer to other coexisting
attractors not orginating from the fundamental path F= x= ẋ=0, notably a period-1
harmonic cycle and a period-3 attractor, as well as other attractors. Examining the basin
structure just before the saddle-node at A, one sees that the saddle-node will hit a highly
intertwined boundary at the point of instability (Figure 5(b)). From previous studies it has
been shown [10] that the unstable manifold of the resonant saddle Dr is heteroclinically
tangled with the stable manifolds (basin boundary) of the unstable period-1; this results
in an accumulation of the Sr basin, coexisting period-1 and period-3 basins of attraction
on to the stable manifold of Dr . If v were decreased slowly at an infinitesimal rate, the
system would find itself at A, sitting on an infinitely intertwined boundary [9]. In any real
situation, due to the inherent uncertainties in the specification in the parameter values and
indeed the value of the perturbation from the saddle-node, long-term predictability will
be lost and hence the jump will be indeterminate. Here the system experiences a long
transient leading either to the stable resonant limit cycle, Sr , the coexisting period-1 or
period-3 attractors [6]. Three possible outcomes under three slightly different perturbations
are shown in Figure 5(c). The first time history shows the jump settling on to the
fundamental solution, Sr ; the second trace, at the same parameter values but from a
slightly different frequency values, leads to the coexisting period-1 attractor; the final trace
settles on to the period-3 attractor. A more realistic situation has been presented by
Soliman [12] where parameters are varied at a finite rate through similar bifurcations

Figure 5. Indeterminate jumps (model A). (a) The steady state resonance response curve at an intermediate
forcing level (F=0·85). Here the jump from point A may or may not re-stabilize on to the large amplitude limit
cycle, R that lies on the resonant branch of the response curve (model A). (b) The upper portrait shows the basin
structure just prior to an indeterminate subcritical bifurcation in the window −1·8 Q xQ 1·8, −1·8 Q yQ 1·8.
Here v=1·09, F=0·85. The circles denote the stable mapping points of the fixed points; the squares the
unstable point. The colour coding is as follows: light grey represents the basin of attraction of the resonant
solution, Sr ; white represents the basin of the non-resonant solution, Sr ; grey is for a coexisting period-1 solution,
P; black basins of all other remote attractors including a period-3 attractor; (model A). (c) Three possible time
histories of x(t) showing the transient response leading to (i) the large amplitude limit cycle, Sr , and (ii) a
coexisting period-1 attractor, P, and (iii) a period-3 attractor. In all cases the system is set on the saddle-node
and then perturbed by a small increment in frequency (model A).
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resulting in an unpredictable outcome has been investigated. Jumps from resonance can
also occur in typical non-linear hardening systems. This can be seen in Figures 6(a) and
6(b) for model B.

6. UNSAFE JUMPS AND CHAOTIC DYNAMICS

At a larger value of forcing, as shown in Figure 7(a), one observes some qualitative
changes in the response diagram; in particular the frequency value at which the chaotic
oscillation loses its stability, at crisis E, has significantly decreased. As shown in
Figure 7(b) (i) complex dynamics including enlargement of the chaotic attractor take place
after point E. This is accompanied by an increase in the frequency value at which the
saddle-node solution loses its stability at point A. In Figure 6(b) (ii) it is shown that long

Figure 6. Indeterminate jumps (model B). (a) The steady state resonance response curve at an intermediate
forcing level (F=0·05). Here the jump to resonance from point B may or may not re-stabilize on to the small
amplitude cycle, R, that lies on the non-resonant branch of the response curve. (b) The upper portrait shows
the basin structure just prior to an indeterminate subcritical bifurcation in the window −1·5 Q xQ 1·5,
−1·5Q yQ 1·5. Here v=0·92, F=0·05. The circles denote the stable mapping points of the fixed points. The
colour coding is as follows: light grey represents the basin of attraction of the resonant solution, Sr ; white
represents the basin of the non-resonant solution, Sr ; black is for a coexisting period-3 solution.



     391

Figure 7. Unsafe jumps. (a) The steady state resonance response curve at a relatively high forcing level
(F=0·99). Here the jump from point A always results in the system going to a remote attractor. (b) Typical
time histories illustrating (i) a large amplitude chaotic attractor after crisis point E, and (ii) long chaotic transients
after fold point A.

chaotic transients may occur after fold A before the system typically settles on to one of
the remote attractors. This leaves a regime in which there is a fundamental attractor giving
an inevitable jump to a remote attractor after the saddle-node bifurcation. In keeping with
the ideas presented in earlier papers on softening systems, this is a purely unsafe jump.

7. CONCLUSIONS

The non-linear resonance behaviour of typical hardening systems has been outlined. For
small forcing levels the system with a linear component (model A) behaves like a linear
system, with resonance occurring when the forcing frequency is approximately equal to
the linearized natural frequency. As the forcing amplitude is increased the steady state
response peaks towards higher frequencies with eventually the well known jump
phenomenon taking place. At higher but still moderate forcing levels, it has been shown
how unpredictable jumps from indeterminate bifurcations arise as quite typical events in
the response of hardening systems. If, at the saddle-node bifurcation, the critical point finds
itself on a highly intertwined basin boundary one cannot predict to which of the remote
attractors the system will jump since the response is extremely sensitive to how the
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bifurcation is realized. Examples of unpredictable jumps to and from resonance were
presented. If one were to carry out a steady state analysis, neglecting the organization of
coexisting basins of attraction prior to the bifurcation, one may seriously overestimate the
predictability of the system at the point of instability.
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